Časopis Saveza udruženja građana geodetske struke u Bosni i Hercegovini

Journal of the Union of Associations of Geodetic Professionals in Bosnia and Herzegovina

Prvi štampani broj časopisa objavljen je 1967. godine. Elektronsko izdanje časopisa objavljuje se na internetu od 2011. godine.

 

The first printed issue of the journal was published in 1967. Electronic edition of the journal is published on the internet since 2011.

GEODETSKI GLASNIK
UDK 528  /  ISSN: 1512-6102  /  ISSN 2233-1786 Online
POČETNA / HOME

O ČASOPISU / ABOUT THE JOURNAL

AKTUELNI BROJ / CURRENT ISSUE

ARHIVA / ARCHIVE

IMPRESUM / IMPRESSUM

UPUTSTVO ZA AUTORE / GUIDELINES FOR AUTHORS

 

GEODETSKI GLASNIK No. 50 (December 2019)

 

SADRŽAJ CONTENTS
 

 

 

Author(s):

 

Ivan Marić

University of Zadar, Department of Geography, Zadar, Croatia

E-mail address: imaric1@unizd.hr

 

Ante Šiljeg

University of Zadar, Department of Geography, Zadar, Croatia

E-mail address: asiljeg@unizd.hr

 

Fran Domazetović

University of Zadar, Geospatial Analaysis Laboratory, Zadar, Croatia

E-mail address: fdomazeto@unizd.hr

 

 

 

GEOSPATIAL TECHNOLOGIES IN 3D DOCUMENTATION AND PROMOTION OF CULTURAL HERITAGE - EXAMPLE OF FORTICA FORTRESS ON THE ISLAND OF PAG

 

Ivan Marić, Ante Šiljeg, Fran Domazetović

 

 

Abstract:

The development of geospatial technologies (GST) has accelerated the process of 3D documentation and facilitated the promotion of cultural heritage. In this paper 3D documentation and promotion of Fortica fortress (Pag island, Republic of Croatia) has been made. The methods of close-range photogrammetry (CRP), 3D print and modern visualisation technique (virtual reality) were used. Data was collected using UAV Phantom 4 Pro, DSLR Nikon D5300 and GNSS RTK Stonex X10. High-resolution 3D models of Fortica were generated using Agisoft Metashape 1.5.1. The dense cloud of the Fortica with 33 million points was generated. Digital surface model (DSM) with spatial resolution of 1,3 cm and digital orthophoto with spatial resolution of 0,6 cm, were created from dense point cloud. The total RMSE of control points was 4,04 cm in the reference coordinate system and 0,24 pixels in the imaging coordinate system. 3D model of the Fortica fortress was used to create virtual walks, while Prusa i3 mk3 physical model of the Fortica fortress was created with the 3D printer. Virtual walk was displayed in the Samsung GearVR model. The proposed methodological framework provides cultural heritage experts with an easy and cost-effective way of generating relatively accurate 3D models and applying these models to various promotional and educational purposes.

Keywords:

geospatial technology (GST), 3D models, virtual reality, 3D printing, Fortica Fortress

 

 

References:

  1. Aina, Y.A. (2012). Applications of geospatial technologies for practitioners: An emerging perspective of geospatial education. In J. S. Miah (Eds.), Emerging informatics-innovative concepts and applications (pp. 3-20). London: InTech. 

  2. Allard, T. T., Sitchon, M., Sawatzky, R., Hoppa, R. D. (2005). Use of hand-held laser scanning and 3d printing for creation of a museum exhibit. In M. Mudge, N. Ryan i R. Scopigno (Eds.), 6th International Symposium on Virtual Reality, Archaelogy and Cultural Heritage VAST 2005 (pp. 97-101). Pisa: Eurographics Association.

  3. Ansari, H., Gondaliya, P. (2013). Effective 3D visualisation from close range photogrametry surface measurment. Pune: Department of Geography, University of Pune. Retrieved from: https://www.slideshare.net/PARTHGONDALIYA1/iirscrp-report-by-parth-gondaliya-and-huzaifa-ansari

  4. Barilar, M., Todić, F., Krste, I. (2015). Korištenje fotogrametrijskog materijala u izradi 3D modela i fototeksture. Ekscentar, 18, 50-56.

  5. Bertin, S., Friedrich, H. (2016). Field application of close‐range digital photogrammetry (CRDP) for grain‐scale fluvial morphology studies. Earth Surface Processes and Landforms, 41(10), 1358-1369.

  6. Bishop, M. P., James, L. A., Shroder Jr, J. F., Walsh, S. J. (2012). Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137(1), 5-26.

  7. Bodzin, A. M., Cirucci, L. (2009). Integrating geospatial technologies to examine urban land use change: A design partnership. Journal of Geography, 108(4-5), 186-197.

  8. Bruno, F., Bruno, S., De Sensi, G., Luchi, M. L., Mancuso, S., Muzzupappa, M. (2010). From 3D reconstruction to virtual reality: A complete methodology for digital archaeological exhibition. Journal of Cultural Heritage, 11(1), 42-49.

  9. Carrozzino, M., Bergamasco, M. (2010). Beyond virtual museums: Experiencing immersive virtual reality in real museums. Journal of Cultural Heritage, 4, 452-458.

  10. Cipriani, L., Fantini, F. (2017). Digitalization culture vs archaeological visualization: integration of pipelines and open issues. In D. Aguilera, A. Georgopoulos, T. Kersten, F. Remondino, i E. Stathopoulou (Eds.), The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 195-202). ISPRS: Nafplio.

  11. Chapman, J. (1994). Destruction of a common heritage: the archaeology of war in Croatia, Bosnia and Hercegovina. Antiquity, 68(258), 120-126.

  12. DiBiase, D., Corbin, T., Fox, T., Francica, J., Green, K., Jackson, J., Jeffress, G., Jones, B., Jones, B., Mennis, J., Schuckman, K., Smith, Cy., Sickle, JV. (2010). The new geospatial technology competency model: Bringing workforce needs into focus. Urisa Journal, 22(2), 55.

  13. Documentation of cultural heritage (6. 5. 2010). Retrieved from: https://www.byzantinecyprus.com/component/content/article/1-byzantine-churches-of-cyprus/17-documentation-of-cultural-heritage.html

  14. Doneus, M., Pfennigbauer, M., Studnicka, N., Ullrich, A. (2009). Terrestrial waveform laser scanning for documentation of cultural heritage. In XXIIth CIPA Symposium. Kyoto: International Committee of Architectural Photogrammetry.

  15. El-Hakim, S. F., Beraldin, J. A., Picard, M., Godin, G. (2004). Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Computer Graphics and Applications, 24(3), 21-29.

  16. Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellán, A. (2016). Image-based surface reconstruction in geomorphometry–merits, limits and developments. Earth Surface Dynamics, 4(2), 359-389.

  17. Ferreira, T. M. (2019). Notre Dame Cathedral: Another Case in a Growing List of Heritage Landmarks Destroyed by Fire. Fire, 2(2), 20.

  18. Fisk, R. (2008). The destruction of cultural heritage in Iraq (Vol. 1). Suffolk: Boydell & Brewer Ltd.

  19. Francioni, F., Lenzerini, F. (2006). The obligation to prevent and avoid destruction of cultural heritage: From Bamiyan to Iraq. In B.T. Hoffman (Eds.), Art and Cultural Heritage: Law, Policy and Practice (pp. 28-40). New York: Cambridge University Press.

  20. Fuhrmann, S., Langguth, F., Goesele, M. (2014). MVE-A Multi-View Reconstruction Environment. In R. Klein, P.Santos, W-D. Fellner, R. Scopignio (Eds.), EUROGRAPHICS Workshops on Graphics and Cultural Heritage (pp. 11-18). Darmstadt: Eurographics.

  21. De Gasperis, G., Cordisco, A., Cucchiara, F. (2018). Immersive Virtual Reality As A Resource For Unaccessible Heritage Sites. In IOP Conference Series: Materials Science and Engineering, 364, (1) (p. 012035). Florence: IOP Publishing.

  22. Gerstenblith, P. (2016). The Destruction of Cultural Heritage: A Crime Against Property or a Crime Against People?. John Marshall Review of Intellectual Property Law, 15(336), 335-393.

  23. Gomes, L., Bellon, O. R. P., Silva, L. (2014). 3D reconstruction methods for digital preservation of cultural heritage: A survey. Pattern Recognition Letters, 50, 3-14.

  24. Guidi, G., Beraldin, J. A., Atzeni, C. (2004). High-accuracy 3D modeling of cultural heritage: the digitizing of Donatello's" Maddalena". IEEE Transactions on image processing, 13(3), 370-380.

  25. Harrowell, E. (2016). Looking for the future in the rubble of Palmyra: Destruction, reconstruction and identity. Geoforum, 69, 81-83.

  26. Inzerillo, L. (2019). SfM Techniques Applied in Bad Lighting and Reflection Conditions: The Case of a Museum Artwork. In K. Arai, S. Kapoor (Eds.), Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, Vol. 943 (pp. 394-401). Cham: Springer.

  27. Jackson, M., Schell, D., Taylor, D. R. F. (2009). The evolution of geospatial technology calls for changes in geospatial research, education and government management. Directions Magazine, 13. Retrieved from: https://www.directionsmag.com/article/2366

  28. Jung, T. H., tom Dieck, M. C. (2017). Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at cultural heritage places. Journal of Place Management and Development, 10(2), 140-151.

  29. Koley, S., Chockalingam, C. (2018). Geospatial Technology: the emerging global trend towards the new horizon of sustainable agriculture. Taurian Innovative Journal, 1(1), 1-6.

  30. Kouymjian, D. (1998). Confiscation of Armenian property and the destruction of Armenian historical monuments as a manifestation of the genocidal process. Armenian Forum, 1(2), 1-12.

  31. Landon, G. V., Seales, W. B. (2006). Petroglyph digitization: enabling cultural heritage scholarship. Machine Vision and Applications, 17(6), 361-371.

  32. Leko, H. (2015). 3D pisači (završni rad). Zagreb: Grafički fakultet Sveučilišta u Zagrebu. Retrieved from: https://eprints.grf.unizg.hr/2239/1/Z576_Leko_Helena.pdf  

  33. Luhmann, T., Robson, S., Kyle, S., Harley, I. (2007). Close range photogrammetry Principles, techniques and applications. Dunbeath: Whittles Publishing.

  34. Marić, I., Šiljeg, A., Barada, M. (2018). Application of Photogrammetry in Documenting Cultural and Historical Heritage–the Example of Fortica Fortress on the Island of Pag. In 14th International Conference on Geoinformation and Cartography. DGU, HGD i HKD: Zagreb.

  35. Martínez-Carricondo, P., Carvajal-Ramírez, F., Yero-Paneque, L., Agüera-Vega, F. (2019). Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Building Research & Information, 1-20.

  36. Matthews, N. A. (2008). Aerial and Close-range Photogrammetric Technology—Providing Resource Documentation, Interpretation, and Preservation, US Bureau of Land Management Technical Note 428. Washington, DC: US Bureau of Land Management. Retrieved from: https://www.blm.gov/documents/national-office/blm-library/technical-note/aerial-and-close-range-photogrammetric   

  37. Mortara, M., Catalano, C. E., Bellotti, F., Fiucci, G., Houry-Panchetti, M., Petridis, P. (2014). Learning cultural heritage by serious games. Journal of Cultural Heritage, 15(3), 318-325.

  38. Mulahusić, A., Tuno, N., Topoljak, J., Balić, D., Hadžiosmanović, E., Stanić, S., Hajdar, A. (2013). Primjena fotogrametrije i laserskog skeniranja kod zaštite spomenika kulturno historijske baštine. Geodetski glasnik, 44, 34-57.

  39. Munawar, N. A. (2017). Reconstructing Cultural Heritage in Conflict Zones: Should Palmyra be Rebuilt. Journal of Archaeology, 2, 33-48.

  40. Nwegbu, M. U., Eze, C. C., Asogwa, B. E. (2011). Globalization of cultural heritage: issues, impacts, and inevitable challenges for Nigeria. Library Philosophy and Practice, Paper 674. Retrieved from: https://digitalcommons.unl.edu/libphilprac/674

  41. Ortiz, P., Sánchez, H., Pires, H., Pérez, J. A. (2006). Experiences about fusioning 3D digitalization techniques for cultural heritage documentation. In H.-G. Maas, D. Schneider (Eds.), ISPRS, Commission V Symposium, Image Engineering and Vision Metrology (pp. 25-27). Dresden: ISPRS.

  42. Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., Chamzas, C. (2007). Methods for 3D digitization of cultural heritage. Journal of cultural heritage, 8(1), 93-98.

  43. Pieraccini, M., Guidi, G., Atzeni C. (2001). 3D digitizing of cultural heritage. Journal of Cultural Heritage, 2, 63−70.

  44. Remondino, F., Rizzi, A. (2010). Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Applied Geomatics, 2(3), 85-100.

  45. Remondino, F., Stylianidis, E. (2016). 3D recording, documentation and management of cultural heritage (Vol. 2). Dunbeath: Whittles Publishing.

  46. Percoco, G., Lavecchia, F., Salmerón, A. J. S. (2015). Preliminary study on the 3D digitization of millimeter scale products by means of photogrammetry. Procedia CIRP, 33, 257-262.

  47. Pribičević, B., Đapo, A., Miljković, V., Babić, L., Vela, E., Kordić, B. (2011). Trodimenzionalna geodetska izmjera za potrebe geodinamičkih i geoloških istraživanja Staroga grada Modruša. Modruški zbornik, 4(4-5), 159-182.

  48. Prusa, J. (2019). 3D printing handbook, Prusa research s.r.o. Retrieved from: https://prusa3d.com/downloads/manual/prusa3d_manual_mk3_en_3_04.pdf

  49. Rihelj, G. (2019). Kula Skrivanat i utvrda Fortica na otoku Pagu u službi kulturnog turizma, Turistički news portal. Retrieved from: https://hrturizam.hr/kula-skrivanat-i-utvrda-fortica-na-otoku-pagu-u-sluzbi-kulturnog-turizma/

  50. Salmon, J. (2014). State of: Close-Range Photogrammetry. Retrieved from: https://www.xyht.com/lidarimaging/state-of-close-range-photogrammetry

  51. Sanseović, S. (2017). Survey and Visualization of St. Michael in Dol on the island of Hvar Sveučilište u Zagrebu (graduation thesis). Zagreb: Geodetski fakultet Sveučilišta u Zagrebu. Retrieved from: https://www.bib.irb.hr/908408?rad=908408

  52. Santagati, C., Inzerillo, L., Di Paola, F., (2013). Image-based modeling techniques for architectural heritage 3d digitalization: limits and potentialities. In P. Grussenmeyer (Ed.), International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-5/W2, XXIV International CIPA Symposium (pp. 555-560). Strasbourg: CIPA.

  53. Stonex (2014). S10 GNSS Receiver. [Brochure]. Lissone: Stonex.

  54. Stylianidis, E., Patias, P., Tsioukas, V., Sechidis, L., Georgiadis, C. (2003). A digital close-range photogrammetric technique for monitoring slope displacements. In S. C. Stiros, S. Pytharou (Eds.), 11th International Symposium on Deformation Measurements. Santorini (Thera) Island: FIG.

  55. Šiljeg, A., Barada, M., Marić, I. (2018). Digital Terrain Modelling. Zagreb: Alfa d.d. and Sveučilište u Zadru.

  56. Šiljeg, A. (2019). Višerezolucijsko modeliranje krajolika primjenom geoprostornih tehnologija. In Međunarodni dan precizne poljoprivrede. Osijek: FAZOS.

  57. Šošić, T. M. (2014). Pojam kulturne baštine–međunarodnopravni pogled. Zbornik radova Pravnog fakulteta u Splitu, 51(4), 833-860.

  58. Şasi, A., Yakar, M. (2018). Photogrammetric modelling of Hasbey Dar'Ülhuffaz (Masjid) using an unmanned aerial vehicle. International Journal of Engineering and Geosciences, 3(1), 6-11.

  59. Themistocleous, K., Ioannides, M., Agapiou, A., Hadjimitsis, D. G. (2015). The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus. In Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Vol. 9535. Paphos: Cyprus Remote Sensing Society.

  60. Tsirliganis, N., Pavlidis, G., Koutsoudis, A., Papadopoulou, D., Tsompanopoulos, A., Stavroglou, K., Zacharenia, L., Chamzas, C. (2004). Archiving cultural objects in the 21st century. Journal of Cultural Heritage, 5(4), 379-384.

  61. Types of mission / Which type of mission to choose. (n. d.). Retrieved from: https://support.pix4d.com/hc/en-us/articles/209960726-Types-of-mission-Which-type-of-mission-to-choose

  62. Vannucci, P., Masi, F., Stefanou, I., Maffi-Berthier, V. (2019). Structural integrity of Notre Dame Cathedral after the fire of April 15th, 2019. Retrieved from: https://hal.archives-ouvertes.fr/hal-02105786v2/document

  63. Valenti, R., Paternò, E. (2019). A Comparison Between TLS and UAV Technologies for Historical Investigation. In A. Cardaci, F. Fassi, F. Remondino (Eds.), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-2/W9, 8th Intl. Workshop 3D-ARCH “3D Virtual Reconstruction and Visualization of Complex Architectures” (pp. 739-745). Bergamo: ISPRS.

  64. Wachowiak, M. J., Karas, B. V. (2009). 3D scanning and replication for museum and cultural heritage applications. Journal of the American Institute for Conservation, 48(2), 141-158.

  65. Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.

  66. What are geospatial technologies? (n. d.). Retrieved from: https://www.aaas.org/programs/scientific-responsibility-human-rights-law/overview-geospatial-project

  67. Yamafune, K. (2016). Using computer vision photogrammetry (Agisoft Photoscan) to record and analyze underwater shipwreck sites (PhD Thesis). Texas: Texas A&M University.

  68. Yakar, M., Yilmaz, H. M. (2008). Using in volume computing of digital close range photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing: ISPRS.

  69. Yastikli, N. (2007). Documentation of cultural heritage using digital, photogrammetry and laser scanning. Journal of Cultural Heritage, 8, 423-427.

 

UDK 528.7:681.783:725.2

 

Article Type:

Original scientific paper

 

pp. 19-44

 

Full text: